431 research outputs found

    Iterative algorithm for reconstruction of entangled states

    Get PDF
    An iterative algorithm for the reconstruction of an unknown quantum state from the results of incompatible measurements is proposed. It consists of Expectation-Maximization step followed by a unitary transformation of the eigenbasis of the density matrix. The procedure has been applied to the reconstruction of the entangled pair of photons.Comment: 4 pages, no figures, some formulations changed, a minor mistake correcte

    Quantum theory of incompatible observations

    Get PDF
    Maximum likelihood principle is shown to be the best measure for relating the experimental data with the predictions of quantum theory.Comment: 3 page

    On the local unitary equivalence of states of multi-partite systems

    Get PDF
    Two pure states of a multi-partite system are alway are related by a unitary transformation acting on the Hilbert space of the whole system. This transformation involves multi-partite transformations. On the other hand some quantum information protocols such as the quantum teleportation and quantum dense coding are based on equivalence of some classes of states of bi-partite systems under the action of local (one-particle) unitary operations. In this paper we address the question: ``Under what conditions are the two states states, ϱ\varrho and σ\sigma, of a multi-partite system locally unitary equivalent?'' We present a set of conditions which have to be satisfied in order that the two states are locally unitary equivalent. In addition, we study whether it is possible to prepare a state of a multi-qudit system. which is divided into two parts A and B, by unitary operations acting only on the systems A and B, separately.Comment: 6 revtex pages, 1 figur

    Quantum Zeno tomography

    Full text link
    We show that the resolution "per absorbed particle" of standard absorption tomography can be outperformed by a simple interferometric setup, provided that the different levels of "gray" in the sample are not uniformly distributed. The technique hinges upon the quantum Zeno effect and has been tested in numerical simulations. The scheme we propose could be implemented in experiments with UV-light, neutrons or X-rays.Comment: 8 pages, 5 figure

    Testing of quantum phase in matter wave optics

    Full text link
    Various phase concepts may be treated as special cases of the maximum likelihood estimation. For example the discrete Fourier estimation that actually coincides with the operational phase of Noh, Fouge`res and Mandel is obtained for continuous Gaussian signals with phase modulated mean.Since signals in quantum theory are discrete, a prediction different from that given by the Gaussian hypothesis should be obtained as the best fit assuming a discrete Poissonian statistics of the signal. Although the Gaussian estimation gives a satisfactory approximation for fitting the phase distribution of almost any state the optimal phase estimation offers in certain cases a measurable better performance. This has been demonstrated in neutron--optical experiment.Comment: 8 pages, 4 figure

    Development of the Magnetic Excitations of Charge-Stripe Ordered La(2-x)Sr(x)NiO(4) on Doping Towards Checkerboard Charge Order

    Get PDF
    The magnetic excitation spectrums of charge stripe ordered La(2-x)Sr(x)NiO(4) x = 0.45 and x = 0.4 were studied by inelastic neutron scattering. We found the magnetic excitation spectrum of x = 0.45 from the ordered Ni^2+ S = 1 spins to match that of checkerboard charge ordered La(1.5)Sr(0.5)NiO(4). The distinctive asymmetry in the magnetic excitations above 40 meV was observed for both doping levels, but an additional ferromagnetic mode was observed in x = 0.45 and not in the x = 0.4. We discuss the origin of crossover in the excitation spectrum between x = 0.45 and x = 0.4 with respect to discommensurations in the charge stripe structure.Comment: 4 Figures. To be appear in the J. Kor. Phys. Soc. as a proceedings paper from the ICM 2012 conferenc

    Reconstruction of the spin state

    Get PDF
    System of 1/2 spin particles is observed repeatedly using Stern-Gerlach apparatuses with rotated orientations. Synthesis of such non-commuting observables is analyzed using maximum likelihood estimation as an example of quantum state reconstruction. Repeated incompatible observations represent a new generalized measurement. This idealized scheme will serve for analysis of future experiments in neutron and quantum optics.Comment: 4 pages, 1 figur

    Experimental violation of a Bell-like inequality with optical vortex beams

    Get PDF
    Optical beams with topological singularities have a Schmidt decomposition. Hence, they display features typically associated with bipartite quantum systems; in particular, these classical beams can exhibit entanglement. This classical entanglement can be quantified by a Bell inequality formulated in terms of Wigner functions. We experimentally demonstrate the violation of this inequality for Laguerre-Gauss (LG) beams and confirm that the violation increases with increasing orbital angular momentum. Our measurements yield negativity of the Wigner function at the origin for \LG_{10} beams, whereas for \LG_{20} we always get a positive value.Comment: 6 pages, 4 eps-color figures. Comments welcome

    Quantum inference of states and processes

    Get PDF
    The maximum-likelihood principle unifies inference of quantum states and processes from experimental noisy data. Particularly, a generic quantum process may be estimated simultaneously with unknown quantum probe states provided that measurements on probe and transformed probe states are available. Drawbacks of various approximate treatments are considered.Comment: 7 pages, 4 figure
    corecore